| Peer-Reviewed

A Study of Five Parameter Type I Generalized Half Logistic Distribution

Received: 29 October 2016     Accepted: 23 October 2017     Published: 4 January 2018
Views:       Downloads:
Abstract

In this paper, we obtained a generalized half logistic distribution which is called a five-parameter type I generalized half logistic distribution. The distributional properties of the model such as the cumulative distribution function (cdf), moment, skewness, kurtosis, the median and the mode of the generalized distribution were established and finally a theorem that relate the distribution to pareto distribution was stated and proved.

Published in Pure and Applied Mathematics Journal (Volume 6, Issue 6)
DOI 10.11648/j.pamj.20170606.14
Page(s) 177-181
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2018. Published by Science Publishing Group

Keywords

Characterizations, Continuous Distribution, Exponential, Kurtosis, Skewness

References
[1] Adatia, A. (1997). Approximate BLUE’s of the parameters of the half logistic distribution based on fairly large doubly censored samples. Computational Statistics and Data Analysis 24, 179-191.
[2] Adatia, A. (2000). Estimation of the parameters of the half-logistic distribution using generalized rank set sampling. Computational Statistics and Data Analysis 33, 1-13.
[3] Balakrishnan, N., Chan, P. S. (1992). Estimation for the scaled half logistic distribution under type II censoring. Computational Statistics and Data Analysis 13,123-131.
[4] Balakrishnan, N. and Hossain, A. (2007), Inference for the Type II generalized logistic distribution under progressive Type II censoring, Journal of Statistical Computation and Simulation, 77 (12), pp1013–1031.
[5] Balakrishnan, N. (1985). Order statistics from the half logistic distribution, Journal of statistical computation and simulation. vol. 20, pp.287-309.
[6] Balakrishnan, N and Puthenpura, S. (1986). Best linear unbiased estimation of location and scale parameters of the half logistic distribution, J. Statist. Comput. Simul. VOL 25. pp193-204.
[7] Balakrishnan, N. and Wong, K. H. T. (1991). Approximate MLEs for the location and scal eparameters of the half logistic distribution with Type-II right censoring, IEEE Trans. On Reliab. Vol 40. pp140-145.
[8] Olapade, A. K. (2003). On Characterizations of the Half Logistic Distribution. InterStat, February Issue, Number 2.
[9] Olapade, A. K. (2009). On a four parameter type II generalized half logistic distribution. Proc. Jangjeon Math. Soc. Korea, Volume 12 (1), pp.21-30.
[10] Olapade, A. K. (2011). On a four-parameter type I generalized half logistic distribution. Proceeding of the Jangjeon Mathematical KOREA. Vol 14. pp189-198.
[11] Olapade, A. K. (2014). The type I generalized half logistic distribution, JIRSS. Vol 13. pp 69-82.
[12] Torabi, H. and Bagheri, F. K. (2010). Estimation of parameter for an extended generalized half-logistic distribution based on complete and censored data, JIRSS. Vol 9. pp171-195.
Cite This Article
  • APA Style

    Bello Olalekan Akanji, Sule Ibrahim, Awodutire Phillip Oluwatobi, Olapade Akintayo Kehinde. (2018). A Study of Five Parameter Type I Generalized Half Logistic Distribution. Pure and Applied Mathematics Journal, 6(6), 177-181. https://doi.org/10.11648/j.pamj.20170606.14

    Copy | Download

    ACS Style

    Bello Olalekan Akanji; Sule Ibrahim; Awodutire Phillip Oluwatobi; Olapade Akintayo Kehinde. A Study of Five Parameter Type I Generalized Half Logistic Distribution. Pure Appl. Math. J. 2018, 6(6), 177-181. doi: 10.11648/j.pamj.20170606.14

    Copy | Download

    AMA Style

    Bello Olalekan Akanji, Sule Ibrahim, Awodutire Phillip Oluwatobi, Olapade Akintayo Kehinde. A Study of Five Parameter Type I Generalized Half Logistic Distribution. Pure Appl Math J. 2018;6(6):177-181. doi: 10.11648/j.pamj.20170606.14

    Copy | Download

  • @article{10.11648/j.pamj.20170606.14,
      author = {Bello Olalekan Akanji and Sule Ibrahim and Awodutire Phillip Oluwatobi and Olapade Akintayo Kehinde},
      title = {A Study of Five Parameter Type I Generalized Half Logistic Distribution},
      journal = {Pure and Applied Mathematics Journal},
      volume = {6},
      number = {6},
      pages = {177-181},
      doi = {10.11648/j.pamj.20170606.14},
      url = {https://doi.org/10.11648/j.pamj.20170606.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pamj.20170606.14},
      abstract = {In this paper, we obtained a generalized half logistic distribution which is called a five-parameter type I generalized half logistic distribution. The distributional properties of the model such as the cumulative distribution function (cdf), moment, skewness, kurtosis, the median and the mode of the generalized distribution were established and finally a theorem that relate the distribution to pareto distribution was stated and proved.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - A Study of Five Parameter Type I Generalized Half Logistic Distribution
    AU  - Bello Olalekan Akanji
    AU  - Sule Ibrahim
    AU  - Awodutire Phillip Oluwatobi
    AU  - Olapade Akintayo Kehinde
    Y1  - 2018/01/04
    PY  - 2018
    N1  - https://doi.org/10.11648/j.pamj.20170606.14
    DO  - 10.11648/j.pamj.20170606.14
    T2  - Pure and Applied Mathematics Journal
    JF  - Pure and Applied Mathematics Journal
    JO  - Pure and Applied Mathematics Journal
    SP  - 177
    EP  - 181
    PB  - Science Publishing Group
    SN  - 2326-9812
    UR  - https://doi.org/10.11648/j.pamj.20170606.14
    AB  - In this paper, we obtained a generalized half logistic distribution which is called a five-parameter type I generalized half logistic distribution. The distributional properties of the model such as the cumulative distribution function (cdf), moment, skewness, kurtosis, the median and the mode of the generalized distribution were established and finally a theorem that relate the distribution to pareto distribution was stated and proved.
    VL  - 6
    IS  - 6
    ER  - 

    Copy | Download

Author Information
  • Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria

  • Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria

  • Department of Statistics, Federal Polytechnic of Oil and Gas, Bonny, Nigeria

  • Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria

  • Sections