As a contribution of the building sector to mitigating the effects of climate change, namely rising sea levels, floods, droughts, cyclones, sandstorms, retreat of arable land and forest fires, in anticipation of the objectives of the Paris Agreement, on the one hand, and energy efficiency on the other hand and the development of sustainable and environmentally friendly building materials, this paper presents the thermal characterization of compressed earth blocks using two clays used by the population of MARADI in Niger for the construction of habitats. The clays are mixed with sand (10%), cement (4%) and varying proportions of millet waste from 0% to 10%. The study shows that the thermal conductivity of composites decreases as the amount of millet waste increases. Conversely, the thermal resistance increases with each addition. Conductivity values varies from 0.268 W. m−1.K−1 to 0.644 W. m−1.K−1 for MARADAWA clay (BAM) samples and from 0.275 W. m−1.K−1 to 0.723 W. m−1.K−1 for Jiratawa clay (BAJ) samples. This represents a reduction of 61.96% for Jiratawa clay and 58.39% for MARADAWA clay compared to non-added materials. Composite materials are more effective in terms of thermal insulation.
Published in | International Journal of Materials Science and Applications (Volume 13, Issue 4) |
DOI | 10.11648/j.ijmsa.20241304.12 |
Page(s) | 71-80 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2024. Published by Science Publishing Group |
Compressed Earth Bricks, Clay, Millet Waste, Thermal Conductivity, Climate Change
Clay | Initial water conten: wi (%) | Specific weight: γs (kN/m3) | Bulk density | Liquidity Limit: LL (%) | Plasticity Limit: LP (%) | Plasticity Index: PI (%) | Optimum Proctor Moisture Content (%) | Proctor Maximum Dry Density |
---|---|---|---|---|---|---|---|---|
Maradawa | 6,3 | 2,54 | 1,18 | 55,6 | 29,2 | 26,4 | 16,33 | 1,64 |
Jiratawa | 1,9 | 2,60 | 1,21 | 36,3 | 19,5 | 16,8 | 9,65 | 1,91 |
Percentage by Mass | 0 % | 2 % | 4 % | 6 % | 8 % | 10 % |
---|---|---|---|---|---|---|
λ (W/m/K) | 0,644 | 0,497 | 0.421 | 0,389 | 0,285 | 0,268 |
R ((m2.K)/W) | 155,3 | 201,4 | 237,6 | 215,3 | 351,3 | 272,2 |
Percentage by Mass | 0 % | 2 % | 4 % | 6 % | 8 % | 10 % |
---|---|---|---|---|---|---|
λ (W/m/K) | 0,723 | 0,488 | 0,376 | 0,310 | 0,302 | 0,275 |
R ((m2.K)/W) | 138,4 | 207,4 | 265,9 | 322,6 | 331,1 | 363,9 |
Dosage (%) | λ (W(/m/K)) | Gain (%) | ||
---|---|---|---|---|
BAM | BAJ | BAM | BAJ | |
0 | 0,644 | 0,723 | 0 | 0 |
2 | 0,497 | 0,4875 | 22,83 | 32,57 |
4 | 0,421 | 0,376 | 34,63 | 47,99 |
6 | 0,389 | 0,31 | 39,60 | 57,12 |
8 | 0,285 | 0,302 | 55,75 | 58,23 |
10 | 0,268 | 0,275 | 58,39 | 61,96 |
BAM | Brick Made from Maradawa Clay |
BAJ | Brick Made from Jiratawa Clay |
UNFCCC | United Nations Framework Convention on Climate Change |
AASHTO | American Association of State Highway and Transportation Officials |
IPCC H-R-B | Intergovernmental Panel on Climate Change Highwway Resarch Board |
Ip | Plasticity Index |
wi | Initial Water Content |
LL | Liquidity Limit |
LP | Plasticity Limit |
MCC | Malbaza Cement Company |
EMC | Portland Cement |
AFNOR NF French | Association for Standardization (French Standard) |
λ | Thermal Conductivity (W/(m.K) |
e | Thickness |
R | Thermal Resistance |
U | Voltage |
∅ | Heat Flow |
∆T | Temperature Variation |
[1] | Sahnoune, S., Benhassine, N., Boussalem, A., «Adaptation au changement climatique dans le contexte du développement durable - Adaptation to climate change in the context of sustainable development» Revue de l'économie financière et des affaires, 03(03), pp. 780-797 Octobre. 2019. |
[2] | Les défis environnementaux en Afrique, quels enjeux pour le continent ? Mathieu Mérino – Forum de Dakar 2021. |
[3] | Réchauffement climatique: selon le GIEC quel rôle le bâtiment et ses industries peuvent-ils jouer ? Mars 2022. |
[4] | Rapport sur l’état mondial des bâtiments et de la construction en 2022: Vers un secteur des bâtiments et de la construction à émission zéro, efficace et résilient. Nairobi. |
[5] | Kathrin, S., Klaus, T., Marcelo, W. A. W. et Clara-Luisa W., «Modes de construction répondant aux défis climatiques,» Bischöfliches Hilfswerk MISEREOR e.V. 2019. |
[6] | K. A. J. Ouedraogo, J.E. Aubert, C. Tribout et al., Ovalbumin as natural organic binder for stabilizing unfired earth bricks: Understanding vernacular techniques to inspire modern constructions, Journal of Cultural Heritage, |
[7] | Brahim Mazhoud. Elaboration et caractérisation mécanique, hygrique et thermique de composites bio-sourcés. Matériaux. INSA de Rennes, 2017. Français. NNT: 2017ISAR0024. tel-01801946. |
[8] | GIEC, 2018: Résumé à l’intention des décideurs, Réchauffement planétaire de 1,5°C, Rapport spécial du GIEC sur les conséquences d’un réchauffement planétaire de 1, 5 °C par rapport aux niveaux préindustriels et les trajectoires associées d’émissions mondiales de gaz à effet de serre, dans le contexte du renforcement de la parade mondiale au changement climatique, du développement durable et de la lutte contre la pauvreté [Publié sous la direction de V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor et T. Waterfield]. Organisation météorologique mondiale, Genève, Suisse, 32 p. |
[9] | M. Boumhaout, L. Boukhattem, H. Hamdi, B. Benhamou and F. Ait Nouh, "Mesure de la conductivité thermique des matériaux de construction de différentes tailles par la méthode des boites", 3ème Congrès de l'Association Marocaine de Thermique, Agadir (Maroc) 21-22 Avril 2014. |
[10] | ECOLOGICAL ARCHITECTURE: Guide méthodologique pour l’éco-réhabilitation du patrimoine bâti dans le sud-ouest européen, INTERREG IVB SUDOE, 2010, p. 35. |
[11] | Programme Conjoint d’Appui au Développement de la Région Maradi (PCM), République du Niger-Système des Nations Unis, 2011–2013. |
[12] | Collectif Terreux Armoricain, Confédération de la Construction en Terre Crue: Guide de Bonnes Pratiques de la construction en Terre Crue: Bauge, 13 Décembre, 2018. |
[13] | Sophie B., Basile C., Léo B. Cycle Terre: Fabriquer la ville bas carbone: Guide de conception et de construction, vol. 1, Museo amàco, Mai, 2021. |
[14] | Confédération de la Construction en Terre Crue: Guide de Bonnes Pratiques de la construction en Terre Crue: Brique de terre crue, 15 Octobre, 2020. |
[15] | Houben H., Rigassi V., Garnier Ph. CRATerre: Blocs de terre comprimée: équipements de production, 3ème édition, Technologies N°5, Bruxelles, Belgique, 1996. |
[16] | E. Losini, A. C. Grillet, M. Bellotto, M. Woloszyn, G. Dotelli, “Natural additives and biopolymers for raw earth construction stabilization - a review,” Construction and Building Materials, October, 2021, |
[17] | Van Essa L. Kamga. Samen et al., “A Low Thermal Conductivity of Lightweight Laterite‑cement Composites with Cotton Wastes Fibres,” Springer Nature, Silicon, 2021, |
[18] | GUIDE DES MATÉRIAUX ISOLANTS pour une isolation efficace et durable Programme energivie. |
[19] | M. Ouakarrouch, K. El Azhary, M. Mansour, N. Laaroussi, M. Garoum, “Thermal study of clay bricks reinforced by sisal-fibers used in construction in south of Morocco,” Energy Reports 6 (2020) 81–88; |
[20] | Soumia Mounir, Abdelhamid Khabbazi, AsmaeKhaldoun, Youssef Maaloufa, Yassine ElHamdouni, Thermal inertia and thermal properties of the composite material clay–wool, Sustainable Cities and Society 19 (2015) 191–199. http://dx.doi.org/10.1016/j.scs.2015.07.018 |
[21] | Salifou GARBA, Aboubacar ALI, Makinta BOUKAR and Saïdou MADOUGOU, “Optimization Study of the Physical Parameters of Clays from Three (3) Quarries in the Region of MARADI, Niger,” International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 2- Feb 2020 pp 74-81. |
[22] | Magnan, Description, identification et classification des sols 21. J.-P., 1997. |
[23] | Salifou G., Aboubacar A., Makinta B., and Saïdou M., “Influence of Millet Pod on the Compressive Strength of Clay Blocks Compressed and Stabilized by Cement,” Technology Reports of Kansai University, Volume 62, Issue 03, April (2020) 333-340. |
[24] | Y. MILLOGO, M. HAJJAJI, R. OUEDRAOGO, Microstructure and physical properties of lime-clayey adobe bricks. Construction and Building Materials, 22 (2008) 2386–2392. |
[25] | K. C. KOUADIO, S. P. KAHO, S. OUATTARA et E. EMERUWA, «Influence de la teneur en résine de polystyrène expansé sur les propriétés thermomécaniques d’un composite de copeaux de bois stabilisé» Rev. Ivoir. Sci. Technol., 36 (2020) 42–51. |
[26] | T. Ashour, A. Korjenic, S. Korjenic, and W. Wu, “Thermal conductivity of unfired earth bricks reinforced by agricultural wastes with cement and gypsum,” Energy Build., vol. 104, pp. 139–146, 2015, |
[27] | M. Palumbo, F. McGregor, A. Heath, and P. Walker, “The influence of two crop by-products on the hygrothermal properties of earth plasters,” Build. Environ., vol. 105, pp. 245–252, 2016, |
[28] | Y. Brouard, N. Belayachi, D. Hoxha, N. Ranganathan, and S. Méo, “Mechanical and hygrothermal behavior of clay – Sunflower (Helianthus annuus) and rape straw (Brassica napus) plaster bio-composites for building insulation,” Constr. Build. Mater., vol. 161, pp. 196–207, 2018, |
[29] | Saghrouni Z, Baillis D, Naouar N, Blal N, Jemni A (2019) Thermal properties of new insulating juncus maritimus fibrous mortar composites/experimental results and analytical laws. Appl Sci 9. |
[30] | Belhadj B, Bederina M, Makhloufi Z, Dheilly RM, Montrelay N, Queneudec M (2016) Contribution to the development of a sand concrete lightened by the addition of barley straws. Constr Build Mater 113: 513–522. |
[31] | Drissa B., P. Florent Kieno, Emmanuel O..: Experimental Study of the Thermal and Mechanical Properties of Compressed Earth Blocks Stabilized with Sawdust According to the Rates for the Thermal Insulation of a Building, International Journal of Construction Engineering and Management 2017, 6(3): 103-109. |
[32] | Omrani, H., Hassini, L., Benazzouk, A., Beji, H., Elcafsi, A.: Elaboration and characterization of clay-sand composite based on Juncus acutus fibers. Constr. Build. Mater.238, 117712 (2020). |
[33] | Laaroussi N, Cherki A, Garoum M, Khabbazi A, Feiz A, Thermal Properties of a Sample prepared using mixtures of clay bricks, Energy Procedia 2013; 42: 337–346. |
[34] | Chaussinand A, Scartezzini J L, Vahid N. Straw bale: A waste from agriculture, a new construction material for sustainable buildings, Energy procedia 2015; 87: 297-302. |
[35] | Lachheb, M.; Youssef, N.; Younsi, Z. A Comprehensive Review of the Improvement of the Thermal and Mechanical Properties of Unfired Clay Bricks by IncorporatingWaste Materials. Buildings 2023, 13, 2314. |
[36] | Ashour, T.; Korjenic, A.; Korjenic, S.;Wu, W. Thermal Conductivity of Unfired Earth Bricks Reinforced by AgriculturalWastes with Cement and Gypsum. Energy Build. 2015, 104, 139–146. |
[37] | Laborel-Préneron, A.; Magniont, C.; Aubert, J. E. Hygrothermal Properties of Unfired Earth Bricks: Effect of Barley Straw, Hemp Shiv and Corn Cob Addition. Energy Build. 2018, 178, 265–278. |
[38] | Giroudon, M.; Laborel-Préneron, A.; Aubert, J. E.; Magniont, C. Comparison of Barley and Lavender Straws as Bioaggregates in Earth Bricks. Constr. Build. Mater. 2019, 202, 254–265. |
[39] | Emmanuel O., Ousmane C., Abdoulaye O., Adamah M., «Caractérisation mécanique et thermophysique des blocs de terre comprimée stabilisée au papier (cellulose) et/ou au ciment.» Journal of Materials and Engineering Structures 2 (2015) 68–76. |
[40] | K. El Azhary, Y. Chihab, M. Mansour, N. Laaroussi, M. Garoum “Energy Efficiency and Thermal Properties of the Composite Material Clay-straw,” Energy Procedia 141 (2017) 160–164. |
[41] | Lertsatitthanakorn C, Atthajariyakul S, Soponronnarit S. Techno-economical evaluation of a Rice Husk Ash (RHA) based sand–cement block for reducing solar conduction heat gain to a building. Construction and Building Materials. 2009 Jan; 23(1): 364-9. |
[42] | Bal H, Jannot Y, Gaye S, Demeurie F. Measurement and modelisation of the thermal conductivity of a wet composite porous medium: Laterite based bricks with millet waste additive. Construction and Building Materials. 2013 Apr; 41: 586-93. |
APA Style
Salifou, G., Harouna, S. D. N., Makinta, B., Madougou, S. (2024). Thermal Performance of Clay and Millet Waste Compressed Earth Blocks Stabilized with Cement. International Journal of Materials Science and Applications, 13(4), 71-80. https://doi.org/10.11648/j.ijmsa.20241304.12
ACS Style
Salifou, G.; Harouna, S. D. N.; Makinta, B.; Madougou, S. Thermal Performance of Clay and Millet Waste Compressed Earth Blocks Stabilized with Cement. Int. J. Mater. Sci. Appl. 2024, 13(4), 71-80. doi: 10.11648/j.ijmsa.20241304.12
@article{10.11648/j.ijmsa.20241304.12, author = {Garba Salifou and Sani Dan Nomao Harouna and Boukar Makinta and Saïdou Madougou}, title = {Thermal Performance of Clay and Millet Waste Compressed Earth Blocks Stabilized with Cement }, journal = {International Journal of Materials Science and Applications}, volume = {13}, number = {4}, pages = {71-80}, doi = {10.11648/j.ijmsa.20241304.12}, url = {https://doi.org/10.11648/j.ijmsa.20241304.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.20241304.12}, abstract = {As a contribution of the building sector to mitigating the effects of climate change, namely rising sea levels, floods, droughts, cyclones, sandstorms, retreat of arable land and forest fires, in anticipation of the objectives of the Paris Agreement, on the one hand, and energy efficiency on the other hand and the development of sustainable and environmentally friendly building materials, this paper presents the thermal characterization of compressed earth blocks using two clays used by the population of MARADI in Niger for the construction of habitats. The clays are mixed with sand (10%), cement (4%) and varying proportions of millet waste from 0% to 10%. The study shows that the thermal conductivity of composites decreases as the amount of millet waste increases. Conversely, the thermal resistance increases with each addition. Conductivity values varies from 0.268 W. m−1.K−1 to 0.644 W. m−1.K−1 for MARADAWA clay (BAM) samples and from 0.275 W. m−1.K−1 to 0.723 W. m−1.K−1 for Jiratawa clay (BAJ) samples. This represents a reduction of 61.96% for Jiratawa clay and 58.39% for MARADAWA clay compared to non-added materials. Composite materials are more effective in terms of thermal insulation. }, year = {2024} }
TY - JOUR T1 - Thermal Performance of Clay and Millet Waste Compressed Earth Blocks Stabilized with Cement AU - Garba Salifou AU - Sani Dan Nomao Harouna AU - Boukar Makinta AU - Saïdou Madougou Y1 - 2024/08/20 PY - 2024 N1 - https://doi.org/10.11648/j.ijmsa.20241304.12 DO - 10.11648/j.ijmsa.20241304.12 T2 - International Journal of Materials Science and Applications JF - International Journal of Materials Science and Applications JO - International Journal of Materials Science and Applications SP - 71 EP - 80 PB - Science Publishing Group SN - 2327-2643 UR - https://doi.org/10.11648/j.ijmsa.20241304.12 AB - As a contribution of the building sector to mitigating the effects of climate change, namely rising sea levels, floods, droughts, cyclones, sandstorms, retreat of arable land and forest fires, in anticipation of the objectives of the Paris Agreement, on the one hand, and energy efficiency on the other hand and the development of sustainable and environmentally friendly building materials, this paper presents the thermal characterization of compressed earth blocks using two clays used by the population of MARADI in Niger for the construction of habitats. The clays are mixed with sand (10%), cement (4%) and varying proportions of millet waste from 0% to 10%. The study shows that the thermal conductivity of composites decreases as the amount of millet waste increases. Conversely, the thermal resistance increases with each addition. Conductivity values varies from 0.268 W. m−1.K−1 to 0.644 W. m−1.K−1 for MARADAWA clay (BAM) samples and from 0.275 W. m−1.K−1 to 0.723 W. m−1.K−1 for Jiratawa clay (BAJ) samples. This represents a reduction of 61.96% for Jiratawa clay and 58.39% for MARADAWA clay compared to non-added materials. Composite materials are more effective in terms of thermal insulation. VL - 13 IS - 4 ER -