We have performed density functional theory (DFT) quantum periodic calculations to investigate the interaction between atomic Pd and oxide surfaces of ZrO2(110), MgO(100), and CeO2(110). In this calculation, Pd adsorption energy on the surface oxygen atom sites of those oxide surfaces correlated with the position of the d electron density center of Pd atom except for on the surface metal atom site. Furthermore, CO adsorption on Pd atoms adsorbed on the surface of those three kinds of oxide surfaces was investigated. The CO adsorption energy did not correlate with the position of d electron density center of Pd at the adsorption sites when they are summarized on each oxide surface but correlated with it when three kinds of oxide surface are grouped by adsorption site. Since Pd atom is the smallest size, it is easily influenced by oxide surface atoms and adsorbates. These results suggest that the nature of Pd atom adsorbed on oxide surface changes depending on where Pd atoms adsorb on the oxide surface, and is controlled by d electron density center.
Published in | International Journal of Computational and Theoretical Chemistry (Volume 4, Issue 3) |
DOI | 10.11648/j.ijctc.20160403.13 |
Page(s) | 31-40 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Pd-oxide Surface Interaction, CO Adsorption, d Electron Density Center, Density Functional Theory Calculation
[1] | M. G. Burrows and W. H. Stockmayer, Proc. R. Soc. London, Ser. A 176, 474 (1940). |
[2] | H. Kondoh, R. Tpyoshima, Y. Monya, M. Yoshida, K. Mase, K. Amemiya, and B. S. Man, Catal. Today, 260, 14 (2016). |
[3] | H. C. Ham, J. A. Stephens, G. S. Hwang, J. Han, S. W. Nam, and Tae. H. Lim, J. Phys. Chem. Lett. 3, 566 (2012). |
[4] | K. C. Taylor, Catal. Rev.-Sci. Eng. 35, 457 (1993). |
[5] | A. Trovarelli, C. de Leitenburg, M. Boaro, and G. Dolvetti, Catal. Today 50, 353 (1999). |
[6] | F. Gao, Y. L. Wang, and D. W. Goodman, J. Am. Chem. Soc. 131, 5734 (2009). |
[7] | J. Y. Park. Y. Zhang, M. Grass, T. Zhang, and G. A. Somorjai, Nano Lett. 8, 673 (2008). |
[8] | D. W. Yuan, Z. R. Liu, and J. H. Chen, J. Chem. Phys. 134, 054704/1 (2011). |
[9] | M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett., 16, 405 (1987). |
[10] | M. Valden, X. Lai, and D. W. Goodman, Science 281, 1647 (1998). |
[11] | A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R. N. Barnett, and U. Landman, J. Phys. Chem. A 103, 9573 (1999). |
[12] | B. Yoon, H. Häkkinen, U. Landman, A. S. Wörz, J.-M. Antonietti, S. Abbet, K. Judai, and U. Heiz, Science 307, 403 (2005). |
[13] | M. S. Chen and D. W. Goodman, Science 306, 252 (2004). |
[14] | H. An, S. Kwon, H. Ha, H. Y. Kim, and H. M. Lee, J. Phys. Chem. C 120, 9292 (2016). |
[15] | A. A. Herzing, C. J. Kiely, A. F. Carley, P. Landon, and G. J. Hutchings, Science 321, 1331 (2008). |
[16] | Z. Duan and G. Henkelman, ACS Catal. 5, 1589 (2015). |
[17] | T. Takei, T. Akita, I. Nakamura, T. Fujitani, M. Okumura, K. Okazaki, J. Huang, T. Ishida, M. Haruta, Adv. Catal., 55, 1 (2012). |
[18] | A. Corma and P. Serna, Science 313, 332 (2006). |
[19] | T. Hayashi, K. Tanaka, and M. Haruta, J. Catal. 178, 566 (1998). |
[20] | B. Chowdhury, J. J. Bravo-Suárez, N. Mimura, Jiqing, K. K. Bando, S. Tsubota, and M. Haruta, J. Phys. Chem. B 110, 22995 (2006). |
[21] | Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science, 301, 935 (2003). |
[22] | M. Shekhar, J. Wang, W.-S. Lee, W. D. Williams, S. M. Kim, E. A. Stach, J. T. Miller, W. N. Delgass, and F. H. Ribeiro, J. Am. Chem. Soc. 134, 4700 (2012). |
[23] | S. Yuan, L. Meng, and J. Wang, J. Phys. Chem. C 117, 14796 (2013). |
[24] | H. S. Bengaard, J. K. Nørskov, J. Sehested, B. S. Clausen, L. P. Nielsen, A. M. Molenbroek, and J. R. Rostrup-Nielsen, J. Catal. 209, 365 (2002). |
[25] | F. Abild-Pedersen, O. Lytken, J. Engbæk, G. Nielsen, I. Chorkendorff, and J. K. Nørskov, Surf. Sci. 590, 127 (2005) |
[26] | A. Kokaji, N. Bonini, S. de Gironcoli, C. Sbraccia, G. Fratesi, and S. Baroni, J. Am. Chem. Soc. 128, 12448 (2006). |
[27] | J. A. Dumesic, G. W. Huber, and M. Boundart, Principles of Heterogeneous Catalysis (Wiley-VCH, Weinheim, Germany, 2008). |
[28] | P. Christopher, H. L. Xin, and S. Linic, Nat. Chem. 3, 467 (2011). |
[29] | X. Y. Deng, B. K. Min, A. Guloy, and C. M. Friend, J. Am. Chem. Soc. 127, 9267, (2005). |
[30] | Roald Hoffmann, SOLIDS and SURFACES, VCH Publishers (1988). |
[31] | P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J. Phys.: Condens. Matter, 21, 395502 (2009). |
[32] | J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992). |
[33] | H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). |
[34] | A. D. Mayernick and M. J. Janik, J. Chem. Phys. 131, 084701 (2009). |
[35] | A. D. Mayernick and M. J. Janik, J. Phys. Chem. C 112, 14955 (2008). |
[36] | B. Hammer and J. K. Nørskov, Surf. Sci. 343, 211 (1995). |
[37] | B. Hammer, Top. Catal. 37, 3 (2006). |
[38] | V. Pallassana and M. Neurock, J. Catal. 191, 301 (2000). |
[39] | X. Guo and J. T. Yates, Jr., J. Chem. Phys. 90, 6761 (1989). |
[40] | G. Ertl and J. Koch, Z. Naturforsch. 25a, 1906 (1970). |
[41] | M. Gajdos, A. Eichler, and J. Hafner, J. Phys.: Condens. Matter, 16, 1141 (2004). |
[42] | S. E. Mason, I. Grinberg, and A. M. Rappe, Phys. Rev. B 69, 161401 (R) (2004). |
APA Style
Tetsuya Ohkawa, Kei Kuramoto. (2017). First Principles Study of CO Adsorption on Atomic Pd Supported on Metal Oxide Surfaces (ZrO2 (110), MgO(100), CeO2(110)). International Journal of Computational and Theoretical Chemistry, 4(3), 31-40. https://doi.org/10.11648/j.ijctc.20160403.13
ACS Style
Tetsuya Ohkawa; Kei Kuramoto. First Principles Study of CO Adsorption on Atomic Pd Supported on Metal Oxide Surfaces (ZrO2 (110), MgO(100), CeO2(110)). Int. J. Comput. Theor. Chem. 2017, 4(3), 31-40. doi: 10.11648/j.ijctc.20160403.13
@article{10.11648/j.ijctc.20160403.13, author = {Tetsuya Ohkawa and Kei Kuramoto}, title = {First Principles Study of CO Adsorption on Atomic Pd Supported on Metal Oxide Surfaces (ZrO2 (110), MgO(100), CeO2(110))}, journal = {International Journal of Computational and Theoretical Chemistry}, volume = {4}, number = {3}, pages = {31-40}, doi = {10.11648/j.ijctc.20160403.13}, url = {https://doi.org/10.11648/j.ijctc.20160403.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijctc.20160403.13}, abstract = {We have performed density functional theory (DFT) quantum periodic calculations to investigate the interaction between atomic Pd and oxide surfaces of ZrO2(110), MgO(100), and CeO2(110). In this calculation, Pd adsorption energy on the surface oxygen atom sites of those oxide surfaces correlated with the position of the d electron density center of Pd atom except for on the surface metal atom site. Furthermore, CO adsorption on Pd atoms adsorbed on the surface of those three kinds of oxide surfaces was investigated. The CO adsorption energy did not correlate with the position of d electron density center of Pd at the adsorption sites when they are summarized on each oxide surface but correlated with it when three kinds of oxide surface are grouped by adsorption site. Since Pd atom is the smallest size, it is easily influenced by oxide surface atoms and adsorbates. These results suggest that the nature of Pd atom adsorbed on oxide surface changes depending on where Pd atoms adsorb on the oxide surface, and is controlled by d electron density center.}, year = {2017} }
TY - JOUR T1 - First Principles Study of CO Adsorption on Atomic Pd Supported on Metal Oxide Surfaces (ZrO2 (110), MgO(100), CeO2(110)) AU - Tetsuya Ohkawa AU - Kei Kuramoto Y1 - 2017/01/17 PY - 2017 N1 - https://doi.org/10.11648/j.ijctc.20160403.13 DO - 10.11648/j.ijctc.20160403.13 T2 - International Journal of Computational and Theoretical Chemistry JF - International Journal of Computational and Theoretical Chemistry JO - International Journal of Computational and Theoretical Chemistry SP - 31 EP - 40 PB - Science Publishing Group SN - 2376-7308 UR - https://doi.org/10.11648/j.ijctc.20160403.13 AB - We have performed density functional theory (DFT) quantum periodic calculations to investigate the interaction between atomic Pd and oxide surfaces of ZrO2(110), MgO(100), and CeO2(110). In this calculation, Pd adsorption energy on the surface oxygen atom sites of those oxide surfaces correlated with the position of the d electron density center of Pd atom except for on the surface metal atom site. Furthermore, CO adsorption on Pd atoms adsorbed on the surface of those three kinds of oxide surfaces was investigated. The CO adsorption energy did not correlate with the position of d electron density center of Pd at the adsorption sites when they are summarized on each oxide surface but correlated with it when three kinds of oxide surface are grouped by adsorption site. Since Pd atom is the smallest size, it is easily influenced by oxide surface atoms and adsorbates. These results suggest that the nature of Pd atom adsorbed on oxide surface changes depending on where Pd atoms adsorb on the oxide surface, and is controlled by d electron density center. VL - 4 IS - 3 ER -