We present a spherically symmetric solution of the general relativistic field equations in isotropic coordinates for anisotropic neutral fluid, compatible with a super dense star modeling by considering a specific choice of anisotropy factor that includes a positive constant “” defined as anisotropy parameter, which varies the relation between the radial and tangential pressure. Further, we have constructed a super-dense star model with all degree of suitability. We have found that the maximum mass decreases with the increase of anisotropy parameter (α). The robustness of our result is that it matches with the recent discoveries.
Published in |
International Journal of Astrophysics and Space Science (Volume 3, Issue 1-1)
This article belongs to the Special Issue Compact Objects in General Relativity |
DOI | 10.11648/j.ijass.s.2015030101.11 |
Page(s) | 1-5 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Isotropic Coordinates, Anisotropic Neutral Fluid, Anisotropy Parameter, Super-Dense Star Model, Radial Pressure, Tangential Pressure
[1] | Bowers, R.L., Liang, E.P.T.: Astrophys. J. 188, 657 (1974). |
[2] | Canuto, V., Lodenquai, J.: Phys. Rev. C 12, 2033 (1975). |
[3] | Chaisi, M., Maharaj, S.D.: Pramana journal of physics 66(3), 609 (2006). |
[4] | Das, B., Ray, P.C., Radinschi, I., Rahaman, F., Ray, S.: Int. J. Mod. Phys. D 20, 1675 (2011). |
[5] | Delgaty, M.S.R., Lake, K.: Comput. Phys. Commun. 115, 395 (1998). |
[6] | Esculpi,M.,Malaver,M.,Aloma,E.,:General Relativity and Gravitation ,39,633-652 (2007) |
[7] | Herrera, L., Ponce de Leon, J.: J. Math. Phys. 26, 2302 (1985). |
[8] | Herrera, L., Santos, N.O.: Phys. Rep. 286, 53 (1997). |
[9] | Herrera, L., Ospino, J., Prisco, A.D.: Phys. Rev. D 77, 027502 (2008). |
[10] | Herrera, L., Prisco, A.D., Ospino, J., Fuenmayor, E.: J. Math. Phys. 42, 2129 (2001). |
[11] | Maharaj, S.D., Takisa, P.M.: Gen. Relativ Gravit. 44, 1419 (2012). |
[12] | Maharaj, S.D., Sunzu, J.M., Ray, S.: Eur. Phys. J. Plus 129 (2014). |
[13] | Mak, M.K., Harko, T.: Chin. J. Astron. Astrophys. 3, 248 (2002). |
[14] | Mak, M.K., Harko, T.: Proc. R. Soc. Lond. A 459, 393 (2003). |
[15] | Mak, M.K., Dobson, P.N., Harko, T.: Int. J. Mod. Phys. D 11, 207 (2002). |
[16] | Malaver, M.: World Applied Programming., 3, 309 (2013). |
[17] | Malaver, M.: Open Science J. Mod. Phys. 1, 6 (2014) |
[18] | Maurya, S.K., Gupta, Y.K.: Phys. Scr. 86, 025009 (2012). |
[19] | Maurya, S.K., Gupta, Y.K.: Astrophys Space Sci 344, 243 (2013). |
[20] | Maurya, S.K., Gupta, Y.K.: Astrophys. Space Sci. 86, 025009 (2014). |
[21] | Pant. N,Pradhan,N.,Murad H.M.: Astrophys. Space Sci. (Accepted) 2014a, |
[22] | Pant.N., Pradhan,N., Ksh Newton Singh.: Journal of Gravity.doi.org/10.1155/2014/380320 2014b |
[23] | Ruderman, R.: A. Rev. Astr. Astrophys. 10, 427 (1972) |
APA Style
Neeraj Pant, Narendra Pradhan, Manuel Malaver. (2014). Anisotropic Fluid Star Model in Isotropic Coordinates. International Journal of Astrophysics and Space Science, 3(1-1), 1-5. https://doi.org/10.11648/j.ijass.s.2015030101.11
ACS Style
Neeraj Pant; Narendra Pradhan; Manuel Malaver. Anisotropic Fluid Star Model in Isotropic Coordinates. Int. J. Astrophys. Space Sci. 2014, 3(1-1), 1-5. doi: 10.11648/j.ijass.s.2015030101.11
AMA Style
Neeraj Pant, Narendra Pradhan, Manuel Malaver. Anisotropic Fluid Star Model in Isotropic Coordinates. Int J Astrophys Space Sci. 2014;3(1-1):1-5. doi: 10.11648/j.ijass.s.2015030101.11
@article{10.11648/j.ijass.s.2015030101.11, author = {Neeraj Pant and Narendra Pradhan and Manuel Malaver}, title = {Anisotropic Fluid Star Model in Isotropic Coordinates}, journal = {International Journal of Astrophysics and Space Science}, volume = {3}, number = {1-1}, pages = {1-5}, doi = {10.11648/j.ijass.s.2015030101.11}, url = {https://doi.org/10.11648/j.ijass.s.2015030101.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijass.s.2015030101.11}, abstract = {We present a spherically symmetric solution of the general relativistic field equations in isotropic coordinates for anisotropic neutral fluid, compatible with a super dense star modeling by considering a specific choice of anisotropy factor that includes a positive constant “” defined as anisotropy parameter, which varies the relation between the radial and tangential pressure. Further, we have constructed a super-dense star model with all degree of suitability. We have found that the maximum mass decreases with the increase of anisotropy parameter (α). The robustness of our result is that it matches with the recent discoveries.}, year = {2014} }
TY - JOUR T1 - Anisotropic Fluid Star Model in Isotropic Coordinates AU - Neeraj Pant AU - Narendra Pradhan AU - Manuel Malaver Y1 - 2014/10/15 PY - 2014 N1 - https://doi.org/10.11648/j.ijass.s.2015030101.11 DO - 10.11648/j.ijass.s.2015030101.11 T2 - International Journal of Astrophysics and Space Science JF - International Journal of Astrophysics and Space Science JO - International Journal of Astrophysics and Space Science SP - 1 EP - 5 PB - Science Publishing Group SN - 2376-7022 UR - https://doi.org/10.11648/j.ijass.s.2015030101.11 AB - We present a spherically symmetric solution of the general relativistic field equations in isotropic coordinates for anisotropic neutral fluid, compatible with a super dense star modeling by considering a specific choice of anisotropy factor that includes a positive constant “” defined as anisotropy parameter, which varies the relation between the radial and tangential pressure. Further, we have constructed a super-dense star model with all degree of suitability. We have found that the maximum mass decreases with the increase of anisotropy parameter (α). The robustness of our result is that it matches with the recent discoveries. VL - 3 IS - 1-1 ER -