Around the time of polarity reversal in 2000 – 2001, the solar wind plasma parameters and interplanetary magnetic field fluctuations are studied for an interval of time that corresponds to Ulysses in-situ measurements of high-latitude heliospheric magnetic field. This study has been done by investigating solar wind speed, density, temperature and solar magnetic field using Ulysses magnetometer and SWOOPS instrument. The sun's magnetic field reverses polarity approximately in every 11 year and it creates a peak in each solar cycle. This study gives a brief understanding of solar wind parameters in the heliosphere during polar reversal in solar cycle 23. The solar magnetic field completely reorganizes during the polar reversal phase, hence the distribution of solar wind parameters changes accordingly. By studying the variation of solar wind parameters, it is possible to understand the polar reversal phenomenon. The photospheric polarity reversal is completed in more active Northern Hemisphere in late 2000 and then in the Southern Hemisphere in 2001. The reversal of the magnetic field at the solar wind source surface is inferred to have occurred between late 2000 and 2001, with the most likely time of reversal being early within that period.
Published in | American Journal of Astronomy and Astrophysics (Volume 3, Issue 3) |
DOI | 10.11648/j.ajaa.20150303.15 |
Page(s) | 56-62 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Heliosphere, Interplanetary Magnetic Field, Solar Wind
[1] | M. B. Kallenrode, 2 ed, Springer, Germany, (2001). |
[2] | T.I. Gombosi, Physics of the Space Environment, ISBN 052159264X, Cambridge University Press, (1999). |
[3] | Y. M. Wang and N. R. Sheeley , ApJ 355 , 726, (1990). |
[4] | L. A. Fisk, Journal of Geophysical Research (Space Physics) 108(A4), 7 (2003). |
[5] | R. Woo, and S.R. Habbal, Geophys Res Lett, 24, 1159, (1997). |
[6] | A. Balogh, T. J. Beek, R.J. Forsyth, P. C. Hedgecock, R.J. Marquedant, E. J. Smith, D. J. Southwood, and B. T. Tsurutani, Astron Astrophys Suppl Ser, 92, 221–236, (1992). |
[7] | S. J. Bame, D. J. McComas, B.L. Barraclough, J.L. Phillips, K. J. Sofaly, J. C. Chavez, B.E. Goldstein, and R. K. Sakurai, Astron Astrophys Suppl Ser, 92, 237–265, (1992). |
[8] | D. J. McComas, Geophys Res Lett, 25, 1– 4, (1998a). |
[9] | D. J. McComas, Geophys Res Lett, 105, 10,419, (2000). |
[10] | J.T. Gosling, Annu Rev Astron Astrophys, 34, 35 – 73, (1996). |
[11] | J.T. Gosling, S.J. Bame,W.C. Feldman, D. J. McComas, P. Riley, B.E. Goldstein, and M. Neugebauer, Geophys Res Lett, 24, 309 –312, (1997). |
[12] | M. Neugebauer, P. C. Liewer, E. J. Smith, R. M. Skoug, and T. H. Zurbuchen, J Geophys Res, 107(A12), 1488, (2002). |
[13] | D. J. McComas , AIP Conf Proc, 679, 33, (2003). |
[14] | N. A. Lotova, V. N. Obridko, K. V. Vladdimirsk, M. K. Bird, and P. Janardhan, Solar Phys, 205, 149–163 ,(2002). |
[15] | E. J. Smith, J. Geophys. Res., 106, 15, 819-831, (2001). |
[16] | J. T. Steinberg, and A. Lazarus, Geophys Res Lett, 23, 1183 –1186, (1996). |
[17] | R. Bruno, Schwann, and F. Mariani, Solar Phys, 104, 431–445, (1986). |
[18] | K.A. Kovalenko, Planet Space Sci, 36, 1343–1358, (1988). |
[19] | P. R. Gazis, A. Barnes, J. D. Mihalov, and A. J. Lazarus , J. Geophys. Res., 99, 6561–6573, (1994). |
[20] | H. Watananbe, M. Kojima, Y. Kouzuka and Y. Yamuchi, AIP Conf. Proc, 382, 117 (1996). |
[21] | Prigancov, Adv Space Res, 11, 41–46, (1991). |
[22] | Kojima M, and Kakinuma T , J. Geophys. Res., 92, 7269 – 7279, (1987). |
[23] | E. J. Smith, and R. G. Marsden, Geophys. Res. Lett., 30, ULY1 1–4, (2003). |
[24] | R. Woo, and S. R. Habbal , J. Geophys. Res., 105, 12, 667 – 674, (2000). |
[25] | D. J. McComas, and J. T. Gosling , Geo phys. Res. Lett., 27, 2437–2430, (2000). |
[26] | D. J. McComas, B. Barraclough, J. Gosling, C. Hammond, J. Phillips, M. Neugebauer, A. Balogh, and R. Forsyth, Geophys. Res. Lett., 105, 19, 893 - 902, (1995a). |
[27] | W. Miyake, K. Kobayashi, K. I. Oyama, T. Mukai, T. Abe, T. Terasama, K. Yu-moto, T. Saito, K. Hira, A. J. Lazarus, and A. D. Johnstone, Planet. Space Sci, 12, 1329–1342, (1988). |
[28] | H. H. Sargent, J. Geophys. Res., 90, 1425–1428, (1985). |
[29] | N. R. Sheeley, J. W. Harvey, and W. C. Feldman, Solar Phys, 49, 271, (1976). |
[30] | A. Balogh and E. J. Smith, Space Sci Rev, 97, 147– 160, (2001). |
[31] | G. H. Jones and A. Balogh, Ann Geo, 21, 1377 – 1382, (2003). |
[32] | D. J. McComas, H. A. Elliott, J.T. Gosling, D.B. Reisenfeld, R. M. Skoug, B. E. Goldstein, M. Neugebauer, and A. Balogh, Geophys Res Lett, 29, 9, (2002). |
[33] | E. J. Smith, A. Balogh, R. J. Forsyth, and D. J.McComas, Geophys Res Lett, 28, 4159–4162, (2001). |
[34] | S. Nerney, and S. T. Suess, Astron J, 296, 259–267, (1985a). |
[35] | C. P. Pagel, and A. Balouh, J Geophys Res, 107, SSH6 1–4, (2002). |
[36] | T. Ohmi, M. Kojima, A. Yokobe, M. Tokumaru, and K. Fujiki, J. Geophys Res, 106, 24923 – 24936, (2001). |
[37] | P. Janardhan, K. Fujiki, M. Kojima, and M. Tokumaru, Proc. Of the ILWS Workshop, 132–139, (2006). |
APA Style
Iren Sobia, Bidhu S. S., Dickson Benjamin. (2015). Fluctuations of Solar Wind Parameters During Polar Reversal. American Journal of Astronomy and Astrophysics, 3(3), 56-62. https://doi.org/10.11648/j.ajaa.20150303.15
ACS Style
Iren Sobia; Bidhu S. S.; Dickson Benjamin. Fluctuations of Solar Wind Parameters During Polar Reversal. Am. J. Astron. Astrophys. 2015, 3(3), 56-62. doi: 10.11648/j.ajaa.20150303.15
AMA Style
Iren Sobia, Bidhu S. S., Dickson Benjamin. Fluctuations of Solar Wind Parameters During Polar Reversal. Am J Astron Astrophys. 2015;3(3):56-62. doi: 10.11648/j.ajaa.20150303.15
@article{10.11648/j.ajaa.20150303.15, author = {Iren Sobia and Bidhu S. S. and Dickson Benjamin}, title = {Fluctuations of Solar Wind Parameters During Polar Reversal}, journal = {American Journal of Astronomy and Astrophysics}, volume = {3}, number = {3}, pages = {56-62}, doi = {10.11648/j.ajaa.20150303.15}, url = {https://doi.org/10.11648/j.ajaa.20150303.15}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajaa.20150303.15}, abstract = {Around the time of polarity reversal in 2000 – 2001, the solar wind plasma parameters and interplanetary magnetic field fluctuations are studied for an interval of time that corresponds to Ulysses in-situ measurements of high-latitude heliospheric magnetic field. This study has been done by investigating solar wind speed, density, temperature and solar magnetic field using Ulysses magnetometer and SWOOPS instrument. The sun's magnetic field reverses polarity approximately in every 11 year and it creates a peak in each solar cycle. This study gives a brief understanding of solar wind parameters in the heliosphere during polar reversal in solar cycle 23. The solar magnetic field completely reorganizes during the polar reversal phase, hence the distribution of solar wind parameters changes accordingly. By studying the variation of solar wind parameters, it is possible to understand the polar reversal phenomenon. The photospheric polarity reversal is completed in more active Northern Hemisphere in late 2000 and then in the Southern Hemisphere in 2001. The reversal of the magnetic field at the solar wind source surface is inferred to have occurred between late 2000 and 2001, with the most likely time of reversal being early within that period.}, year = {2015} }
TY - JOUR T1 - Fluctuations of Solar Wind Parameters During Polar Reversal AU - Iren Sobia AU - Bidhu S. S. AU - Dickson Benjamin Y1 - 2015/05/19 PY - 2015 N1 - https://doi.org/10.11648/j.ajaa.20150303.15 DO - 10.11648/j.ajaa.20150303.15 T2 - American Journal of Astronomy and Astrophysics JF - American Journal of Astronomy and Astrophysics JO - American Journal of Astronomy and Astrophysics SP - 56 EP - 62 PB - Science Publishing Group SN - 2376-4686 UR - https://doi.org/10.11648/j.ajaa.20150303.15 AB - Around the time of polarity reversal in 2000 – 2001, the solar wind plasma parameters and interplanetary magnetic field fluctuations are studied for an interval of time that corresponds to Ulysses in-situ measurements of high-latitude heliospheric magnetic field. This study has been done by investigating solar wind speed, density, temperature and solar magnetic field using Ulysses magnetometer and SWOOPS instrument. The sun's magnetic field reverses polarity approximately in every 11 year and it creates a peak in each solar cycle. This study gives a brief understanding of solar wind parameters in the heliosphere during polar reversal in solar cycle 23. The solar magnetic field completely reorganizes during the polar reversal phase, hence the distribution of solar wind parameters changes accordingly. By studying the variation of solar wind parameters, it is possible to understand the polar reversal phenomenon. The photospheric polarity reversal is completed in more active Northern Hemisphere in late 2000 and then in the Southern Hemisphere in 2001. The reversal of the magnetic field at the solar wind source surface is inferred to have occurred between late 2000 and 2001, with the most likely time of reversal being early within that period. VL - 3 IS - 3 ER -