Isoperimetric, Milman reverse, Hilbert, Widder, Fan-Taussky-Todd, Landau, and Fortuin–Kasteleyn–Ginibre (FKG) inequalities in n dimensions in investigations of multidimensional estimators support the use of James-Stein estimator against classical least squares as applied to Cumulant Analysis, Associate Random Variables, and Time Series Analysis.
Published in | Applied and Computational Mathematics (Volume 7, Issue 3) |
DOI | 10.11648/j.acm.20180703.14 |
Page(s) | 94-100 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2018. Published by Science Publishing Group |
Multidimensional Time Model, James-Stein Estimator, Sampling and Functional Inequalities
[1] | M. Fundator Applications of Multidimensional Time Model for Probability Cumulative Function for Parameter and Risk Reduction. In JSM Proceedings Health Policy Statistics Section Alexandria, VA: American Statistical Association. 433-441. |
[2] | M. Fundator. Multidimensional Time Model for Probability Cumulative Function. In JSM Proceedings Health Policy Statistics Section. 4029-4039. |
[3] | M. Fundator. Testing Statistical Hypothesis in Light of Mathematical Aspects in Analysis of Probability doi:10.20944/preprints201607.0069. v1. |
[4] | M. Fundator Application of Multidimensional time model for probability Cumulative Function to Brownian motion on fractals in chemical reactions (44th Middle Atlantic Regional Meeting, June/9-12/16, Riverdale, NY) Academia Journal of Scientific Research (ISSN 2315-7712) DOI: 10.15413/ajsr.2016.0167 In preparation for publication. |
[5] | Michael Fundator Application of Multidimensional time model for probability Cumulative Function to Brownian motion on fractals in chemical reactions (Northeast Regional Meeting, Binghamton, NY, October/5-8/16). Academia Journal of Scientific Research (ISSN 2315-7712) DOI: 10.15413/ajsr.2016.0168 In preparation for publication. |
[6] | Michael Fundator Applications of Multidimensional Time Model for Probability Cumulative Function for design and analysis of stepped wedge randomized trials. Academia Journal of Scientific Research (ISSN 2315-7712) DOI: 10.15413/ajsr.2016.0169 In preparation for publication. |
[7] | Michael Fundator Multidimensional Time Model for Probability Cumulative Function and Connections Between Deterministic Computations and Probabilities Journal of Mathematics and System Science 7 (2017) 101-109 doi: 10.17265/2159-5291/2017.04.001. |
[8] | N. Bohr, H. A. Kramers, J. C. Slater The quantum Theory of Radiation. |
[9] | J. Hendry Bohr-Kramers-Slater: A Virtual Theory of Virtual Oscillators and Its Role in the History of Quantum Mechanics. A. N. |
[10] | M. P. Bianchi A BGK-type model for a gas mixture undergoing reversible reaction. |
[11] | H. A. Kramers “Brownian motion in a field of force and the diffusion model of chemical reactions.” Physica, 7, 4, 284-304 (1940). |
[12] | R. von Mises “Probability, Statistics and Truth”. |
[13] | P. Morters “Lecture notes.” |
[14] | D. R. Brillinger “Moments, cumulants, and some applications to stationary random processes”. |
[15] | Y. L. Tong, “Relationship between stochastic inequalities and some classical mathematical inequalities,” Journal of Inequalities and Applications, vol. 1, no. 1, pp. 85-98, 1997. |
[16] | J. D Esary, F Proschan, D. W Walkup “Association of random variables with applications” Ann. Math. Statist., 38 (1976), pp. 1466–1474 |
[17] | Paul Richard Halmos “Lectures on Boolean Algebras” Van Nostrand. |
[18] | Khinchin “Three pearls of Number theory”. |
[19] | V Blåsjö The Evolution of the Isoperimetric Problem https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/blasjo526.pdf. |
[20] | Sariel Har-Peled The Johnson-Lindenstrauss Lemma. |
[21] | R. Tapia The Isoperimetric Problem Revisited: Extracting a Short Proof of Sufficiency from Euler's 1744 Approach to Necessity. |
[22] | P J. H Pineyro Gergonne; The isoperimetric problem and the Steiner's symmetrization. |
[23] | Gergonne, J. D.: Goeometrie. Recherche de la surface plane de moindre contour, entre toutes celles de m^eme etendue, et du corps de moindre surface, entre tous ceux de m^eme volume, Annales de Gergonne 4 (1813-1814), 338-343. |
[24] | Hilbert D. “Uber die Darstellung definiter Formen als Summe von Formenquadraten” Math Ann. 32, 342-350 (88). |
[25] | I. Schur, Bemerkungungen zur Theorie der beschr ankten Bilinearformen mit endlich vielen Ver andlichen, J. reine angew. Math., 140 (11). |
[26] | D. V. Widder, An inequality related to one of Hilbert’s, J. London Math. Soc. 4, 194-198. |
[27] | Frazer C. Note on Hilber’s inequality, J. London Math. Soc. 21/46 pp. 7-9. |
[28] | G. J. O. Jameson Hilbert’s inequality and related results Notes |
[29] | G. H. Hardy, “Prolegomena to a chapter on inequalities.” |
[30] | G. H. Hardy, J. E. Littlewood and G. P´olya, Inequalities, 2nd ed., Cambridge University Press. |
[31] | Mitrinovic, Dragoslav S. Analytic Inequalities. |
[32] | G. D. Handler Hilbert and Hardy type inequalities. |
[33] | H. S. Wilf, Finite sections of some classical inequalities, Ergebnisse der Mathematik, Band 52. |
[34] | Minkowski, Hermann (1896). Geometrie der Zahlen. Leipzig: Teubner. |
[35] | Milman, Vitali D. (1986). "Inégalité de Brunn-Minkowski inverse et applications à la théorie locale des espaces normés. [An inverse form of the Brunn-Minkowski inequality, with applications to the local theory of normed spaces]". C. R. Acad. Sci. Paris Sér. I Math. 302 (1): 25–28. |
[36] | E. F. Beckenbach and R. Bellman. “Inequalities”, Springer, Berlin, 1983. |
[37] | Fan. K, O. Taussky and J. Todd. Discrete analogues of inequalities of wirtinger. Monatsh, Math, 59 (1995), 73-90. |
[38] | C. Stein, “Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution,”in Proc. Third Berkeley Symp. OnMath. Statist. and Prob., vol. 1, pp. 197-206. |
[39] | C. Stein. Estimation of the mean of a multivariate normal distribution. Ann. Stat., 9 (6): 1135–1151. |
[40] | D. E. A. Giles. et al The positive-part Stein-rule estimator and tests of hypotheses. Economics Letters 26 (1988): 49-52. |
[41] | Fortuin, C. M.; Kasteleyn, P. W.; Ginibre, J. Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22 (1971), no. 2, 89--103. |
[42] | R. A. L. Carter et al Unbiased Estimation of the MSE Matrix of Stein-Rule Estimators, Confidence Ellipsoids, and Hypothesis Testing. |
[43] | H. M. Hudson “A Natural Identity for exponential families with applications in multiparameter estimation” The Annals of Statistics V. 6, N 3. |
[44] | Z-G Xiao et al A simple new proof of Fan-Taussky-Todd inequalities. |
[45] | H. Alzer Converses of two inequalities of Ky Fan, O. Taussky, and J. Todd Journal of Mathematical Analysis and ApplicationsVolume 161, Issue 1, October/91, 142-147https://doi.org/10.1016/0022-247X (91)90365-7. |
APA Style
Michael Fundator. (2018). Geometrical, Algebraic, Functional and Correlation Inequalities Applied in Support of James-Stein Estimator for Multidimensional Projections. Applied and Computational Mathematics, 7(3), 94-100. https://doi.org/10.11648/j.acm.20180703.14
ACS Style
Michael Fundator. Geometrical, Algebraic, Functional and Correlation Inequalities Applied in Support of James-Stein Estimator for Multidimensional Projections. Appl. Comput. Math. 2018, 7(3), 94-100. doi: 10.11648/j.acm.20180703.14
AMA Style
Michael Fundator. Geometrical, Algebraic, Functional and Correlation Inequalities Applied in Support of James-Stein Estimator for Multidimensional Projections. Appl Comput Math. 2018;7(3):94-100. doi: 10.11648/j.acm.20180703.14
@article{10.11648/j.acm.20180703.14, author = {Michael Fundator}, title = {Geometrical, Algebraic, Functional and Correlation Inequalities Applied in Support of James-Stein Estimator for Multidimensional Projections}, journal = {Applied and Computational Mathematics}, volume = {7}, number = {3}, pages = {94-100}, doi = {10.11648/j.acm.20180703.14}, url = {https://doi.org/10.11648/j.acm.20180703.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.acm.20180703.14}, abstract = {Isoperimetric, Milman reverse, Hilbert, Widder, Fan-Taussky-Todd, Landau, and Fortuin–Kasteleyn–Ginibre (FKG) inequalities in n dimensions in investigations of multidimensional estimators support the use of James-Stein estimator against classical least squares as applied to Cumulant Analysis, Associate Random Variables, and Time Series Analysis.}, year = {2018} }
TY - JOUR T1 - Geometrical, Algebraic, Functional and Correlation Inequalities Applied in Support of James-Stein Estimator for Multidimensional Projections AU - Michael Fundator Y1 - 2018/07/05 PY - 2018 N1 - https://doi.org/10.11648/j.acm.20180703.14 DO - 10.11648/j.acm.20180703.14 T2 - Applied and Computational Mathematics JF - Applied and Computational Mathematics JO - Applied and Computational Mathematics SP - 94 EP - 100 PB - Science Publishing Group SN - 2328-5613 UR - https://doi.org/10.11648/j.acm.20180703.14 AB - Isoperimetric, Milman reverse, Hilbert, Widder, Fan-Taussky-Todd, Landau, and Fortuin–Kasteleyn–Ginibre (FKG) inequalities in n dimensions in investigations of multidimensional estimators support the use of James-Stein estimator against classical least squares as applied to Cumulant Analysis, Associate Random Variables, and Time Series Analysis. VL - 7 IS - 3 ER -